Можно ли есть металл

Тяжелые металлы в еде и везде — LookBio Журнал для тех, кто ищет Bio

Мы часто слышим про тяжелые металлы, что они вредны для человека и их нужно избегать. Однако мы не всегда четко представляем себе, какие металлы – тяжелые, чем они вредны и как обезопасить себя от их влияния. Что ж, пора исправлять ситуацию. Вспоминаем таблицу Менделеева вместе, параллельно уплетая клубнику с кинзой. Почему – читайте ниже.

Heavy metals Mendeleev table

Что такое тяжелые металлы

Существует много определений тяжелых металлов – в зависимости от атомной массы (т.е. значения массы атома, выраженного в атомных единицах массы), плотности и других критериев. Если вы помните, как устроена таблица Менделеева, то знаете, что элементы в ней расположены, помимо прочего, по возрастанию атомной массы. Т.е. чем ближе к концу таблицы, тем элемент тяжелее.

Согласно Большому энциклопедическому словарю, «тяжелые металлы – это цветные металлы с плотностью, большей, чем у железа: Pb (свинец), Cu (медь), Zn (цинк), Ni (никель), Cd (кадмий), Co (кобальт), Sb (сурьма), Sn (олово), Bi (висмут), Hg (ртуть)». Некоторые классификации также относят к тяжелым металлам мышьяк, про действие которого отдельно рассказывать не надо.

Где можно встретить тяжелые металлы

Металлы – это природные элементы, в огромном количестве содержащиеся в окружающей среде и в микроскопических дозах – в организме каждого из нас. Более того, в предусмотренных природой количествах они необходимы нашим организмам для нормального функционирования. Однако еще Парацельс (швейцарско-немецкий врач и алхимик 16 века) учил, что любое вещество – яд, все зависит лишь от дозы. В случае с тяжелыми металлами это выражение – стопроцентное попадание.

С тяжелыми металлами человек соприкасается много где: они присутствуют в воздухе, которым мы дышим, в воде, которую пьем и которой моемся, в почве и, соответственно, в нашей пище, в косметике и т.д. В этой статье мы хотим сфокусироваться именно на тяжелых металлах в продуктах питания.

Хотя необходимо избегать попадания тяжелых металлов в организм, это не всегда возможно. Европейское агентство по безопасности продуктов питания (EFSA) выявило максимальные дозы разных тяжелых металлов, которые допустимо потреблять ежедневно и еженедельно в течение всей жизни без особого риска для здоровья. Эти дозы указываются в миллиграммах вещества на килограмм веса вашего организма – такая доза будет допустима для потребления ежедневно или еженедельно.

Как тяжелые металлы попадают к нам в пищу

Выхлопные газы автомобилей и дымовые выбросы промышленных предприятий содержат высокие концентрации тяжелых металлов. Через эти выбросы металлы попадают в воду, почву и воздух, а оттуда – во флору и фауну, представителей которых мы потом едим. К тому же пища может загрязниться тяжелыми металлами в результате неправильного хранения и использования некачественной упаковки.

Недавно Росконтроль опубликовал материал о том, что на публичное обсуждение вынесены проекты изменений перечней стандартов на упаковку, парфюмерию и детские товары – в том числе и на измерение уровня тяжелых металлов в материале упаковки, что говорит нам об актуальности этой темы и в нашей стране.

Тяжелые металлы могут быть обнаружены в самых разных видах продуктов: мясе, рыбе, морепродуктах, овощах и злаках и, конечно, во всех жидкостях – в первую очередь, в воде. Проблема, однако, заключается в том, что в домашних условиях, без специальных лабораторных тестов выявить наличие тяжелых металлов в пище практически невозможно.

Что самое удивительное и печальное, иногда даже сертификат органики не может дать потребителю стопроцентной уверенности в чистоте продукта. Известен случай содержания в органическом (имеющем сертификат USDA) мангостине (мангостане) тайского происхождения крайне высоких концентраций свинца. Производитель сырья перепродал его на переработку и брендирование, сопроводив то ли намеренно, то ли по ошибке сертификатом о проведении анализа на содержание тяжелых металлов. Однако независимая лаборатория позже выявила, что содержание свинца в продукте было примерно в 200 раз выше, чем заявлял производитель.

Конкретный бренд, однако, выявить невозможно, потому что сырье производитель поставляет разным компаниям на обработку и брендирование, поэтому единственный способ узнать концентрацию тяжелых металлов в вашем мангостине – обратиться напрямую к тому, кто его произвел и поставил, а еще лучше – сделать независимый лабораторный анализ (что, конечно, сложно и дорого).

Похожие случаи наблюдались с гингко из Китая, некоторыми производителями какао и другими продуктами.

Одним из рисков, к которым ведет потребление повышенных доз тяжелых металлов – появление диабета. Ученые выяснили, что мышьяк, кадмий, ртуть и никель играют одну из важнейших ролей в появлении этой болезни 20 века.

Читайте также:  Можно ли есть пожелтевшую брокколи

Как вывести тяжелые металлы из организма

Удивительно, но иногда простые и привычные продукты обладают совершенно волшебными свойствами, о которых мы не подозреваем. Так, зелень кориандра, или попросту кинза, помогает вывести тяжелые металлы из организма. Кинза препятствует отложению и эффективно очищает организм от свинца, что было доказано японскими учеными в 2001 году на экспериментах с мышами. Также кинза дает положительный эффект очищения от ртути и алюминия. Для эффективного и бережного детокса введите в свой ежедневный рацион ¼ чашки кинзы вместе с черешками. Не надо переусердствовать с количеством, т.к. вашему организму нужно еще и избавляться от металлов, которые кинза будет выводить – происходит это в основном через мочу.

Очень сильным очищающим эффектом обладает также хлорелла.

Про собственно тяжелые металлы

Мы не будем рассказывать про все тяжелые металлы, иначе эта статья станет слишком длинной, однако скажем про пару самых «популярных» тяжелых металлов, которые у всех на устах в качестве главных страшилок (которыми они, к сожалению, действительно являются).

Свинец

Свинец в окружающей среде повсюду: в воде, воздухе, горных породах. Однако для человека свинец – токсичный тяжелый металл, отравление которым может приводить, помимо прочего, к раку, патологиям костей и сильным нарушениям функции головного мозга, почек, кишечника и т.д.
Отравление свинцом – самое распространенное отравление тяжелым металлом. Человек соприкасается со свинцом, вдыхая автомобильные выхлопные газы, используя промышленную косметику и даже пищу. В бензин, на котором работает большинство автомобилей, для увеличения октанового числа добавляют тетраэтилсвинец – соединение свинца, для человека являющееся сильным ядом, отравление которым поражает мозг и нервную систему, ведет к психическим расстройствам вплоть до летального эффекта.

Ртуть

Ртуть и ее соединения очень токсичны для человека. Не зря мамы в детстве пугали нас разбитыми градусниками. Ртуть может быть природного и антропогенного происхождения. В природе она появляется в атмосфере из-за выветривания пород, содержащих ртуть, а ртуть антропогенного происхождения попадает в атмосферу в первую очередь при сжигании угля на электростанциях. Отравление ртутью, как и марганцем, оказывает направленное действие на нервную систему, нарушая ее нормальное функционирование.

Около половины от всего промышленно произведенного объема ртути попадает в Мировой океан. Это значит, что употребление в пищу любых морепродуктов и рыбы – потенциальный риск получить с пищей дозу ртути, причем значительную, т.к. концентрация этого вещества в тканях живых существ будет намного больше, чем в воде.
Однако ученые выяснили, что есть продукт, употребление которого помогает ртути, содержащейся в рыбе, не усваиваться при пищеварении, а выводиться из организма в «нетронутом» виде. Как ни удивительно, но этот продукт – клубника. А также арахисовое масло. И растительный белок из конопли. Здорово, правда?

Кадмий

Кадмий попадает в окружающую среду с отходами металлургической промышленности, мусороперерабатывающих заводов и с неправильной утилизацией никель-кадмиевых источников тока (аккумуляторов). Кадмий опасен для человека в силу своих канцерогенных свойств и способности накапливаться в организме. При избытке соединений кадмия в организме или при отравлением (например, при вдыхании паров оксида кадмия) поражается нервная система, нарушается фосфорно-кальциевый обмен, ферментные процессы и структура белковых молекул. Хроническое отравление приводит к анемии и разрушению костей.

Ванадий

Соединения ванадия используются в сталелитейной, фармацевтической, текстильной промышленности, вводятся в виде добавок в состав красителей, протрав, чернил и т. д. Отравление ванадием – неприятная вещь. Как и свинец, ванадий обладает политропным действием на организм, т.е. влияет не на какой-то один конкретный орган или систему, а на много систем сразу. В результате отравления ванадием в организме сбивается регуляция биохимических процессов, начинаются воспалительные процессы кожи и слизистых оболочек дыхательных путей, функциональные изменения органов кровообращения, ослабление иммунитета и т.д.

Кобальт

Кобальт используют для производства материалов, которые характеризуются жаростойкостью и для твердых инструментов – резцов и сверл. В медицине металл применяется для стерилизации препаратов и инструментов, а также в лучевой терапии.

Отравление кобальтом в основном встречается у работников стальной промышленности или в случаях загрязнения кобальтом еды или питья. Такое отравление может стать причиной сердечной недостаточности, гиперплазии (т.е. доброкачественного патологического увеличения) щитовидной железы и нарушения ее функций, а также нарушения обоняния, потери аппетита, дыхательной недостаточности и даже бронхиальной астмы.

Источник

Металлический голод все ближе

Президиум Российской академии наук обсудил состояние минерально-сырьевой базы высокотехнологической промышленности России и пришел к неутешительным выводам. Запасы исчерпываются, а необходимые для их пополнения геологические работы не ведутся

В середине февраля состоялось заседание Президиума РАН, посвященное обсуждению научных основ развития минерально-сырьевой базы высокотехнологической промышленности России. С докладами выступили научный руководитель Института геологии рудных месторождений, петрографии, минералогии и геохимии РАН академик РАН Николай Бортников и научный руководитель Института геологии и минералогии им. В. С. Соболева СО РАН академик РАН Николай Похиленко. В основе обсуждения стоял вопрос: возможно ли выполнить недавно принятую Стратегию научно-технологического развития Российской Федерации, не развивая минерально-сырьевую базу высокотехнологических металлов и продолжая проводить прежнюю экономическую политику — закупать оборудование за рубежом, продавая наши сырьевые ресурсы?

ГЕОЛ ГРАФ МЕДЬ.png

Металлов требуется все больше

Как отметил академик Бортников, если несколько веков назад человечество использовало незначительное число материалов и металлов: дерево, кирпич, железо, медь, олово, золото и серебро, — то в ХХ веке произошел огромный скачок их потребления. В 1980 году для создания компьютера требовалось всего 20 металлов, сейчас — около 60, а для того, чтобы создать современный самолет, нужно около 80 металлов. То есть значительная доля металлов, представленных в таблице Менделеева.

Читайте также:  Можно ли есть перед крещением ребенка крестному отцу

Их них можно выделить критически редкие металлы, важные для высокотехнологической промышленности: висмут, кобальт, литий, галлий, германий, иридий, литий, палладий, платина.

Каковы основные тенденции использования металлов в настоящее время? С одной стороны, это глобализация их производства, в производство металлов включается все больше стран, с другой — происходит монополизация производства некоторых из них: самая большая доля у Китая, который производит 50% всех металлов, прежде всего предназначенных для высокотехнологической промышленности, притом что его население составляет 19% населения Земли.

magnifier.png Самая большая доля в производстве металлов у Китая, который производит 50% всех металлов, прежде всего предназначенных для высокотехнологической промышленности, притом что его население составляет 19% населения Земли

А ведь аппетиты экономики растут, соответственно растет и потребление металлов. Например, ежегодное производство олова увеличилось за последние годы на 21%, а галлия — в 29 раз.

Развитие технологий, вызванное борьбой с изменением климата, также потребует значительного роста потребления металлов — до 20 гигатонн через несколько лет. Так, развитие возобновляемой энергетики вызовет рост потребления алюминия, кобальта и других металлов, которые необходимы для строительства ветряных турбин, на 300%, солнечных батарей — на 200 %, устройств для накопителей энергии — на 1000%. К чему это может привести, видно на примере меди. Медь потребляется с незапамятных времен. Но долгие годы рост ее производства составлял в среднем 3% в год. А с 2013 по 2027 год будет произведено столько меди, сколько было произведено за всю историю человечества. Ожидается, что после 2030 года производство меди резко снизится из-за исчерпания ресурсов. А в нашей стране это должно произойти значительно раньше. И, скажем, рения, очень важного материала, хватит примерно на тот же срок. Встает вопрос: как обеспечить постоянно растущее население Земли металлами, при еще большем росте их потребления? Как обеспечить ресурсами достигнутый уровень жизни и улучшить его благодаря достижениям науки и техники?

ГЕОЛ ГРАФ ОБЕСП МЕДЬ.png

Что делать?

По мнению Николая Бортникова, для решения проблемы минеральных ресурсов в России необходимо ответить на несколько вопросов. Геологический: достаточно ли у нас минеральных ресурсов? Горнотехнический: можем ли мы извлекать металлы из руд? Экономический: можем ли добывать и извлекать металлы по цене, доступной для пользователей? И наконец, экологический и социальный: можем ли добывать руды без ущерба или с минимальным риском для окружающей среды и общества? То есть проблема обеспечения минеральными ресурсами выходит далеко за пределы геологической науки.

Некоторыми металлами (медь, никель, олово, вольфрам, молибден, тантал, ниобий, кобальт, скандий, германий, платиноиды, железо) наша страна обеспечена более чем на 15 лет; другими (свинец, сурьма, золото, серебро, алмазы, цинк) — на 10–15 лет. Есть дефицитные металлы: уран, марганец, хром, титан, алюминий, цирконий, бериллий, литий, рений, редкие земли иттриевой группы, запасы которых либо уже исчерпаны или находятся на грани исчерпания. И хотя по геологическим запасам целого ряда металлов Россия входит в первую пятерку или десятку стран мира, когда дело касается их добычи, ситуация меняется. Например, это касается олова.

magnifier.png Частью металлов наша страна обеспечена более чем на 15 лет, частью — на 10–15 лет, и существуют дефицитные металлы, запасы которых либо уже исчерпаны, либо находятся на грани исчерпания

Академик Бортников отметил, что по целому ряду критически важных металлов (галлий, селен, теллур, ванадий, редкие земли цериевой группы, висмут, кадмий и целый ряд других) запасы вообще не оценены. Дело в том, что эти металлы встречаются в природе в трех видах: в виде собственных минералов, в виде примесей в других минералах или в составе кристаллических структур других минералов. Определение запасов последних двух групп, как правило, недостоверны, потому что они требуют специальных методов подсчета запасов и анализа форм нахождения этих металлов в рудах. К примеру, в мире нет ни одного месторождения кобальта, галлия, индия, родия, германия, селена, теллура или рения. Их источниками служат медные, алюминиевые, цинковые и железные руды. Содержание попутных металлов в различных рудах может отличаться на порядки, поэтому количественный выход продукта прогнозировать очень трудно. Даже если вы точно знаете, сколько в мире добыто меди, это не означает, что можно точно рассчитать тоннаж попутного молибдена, а тем более рения, получаемого, в свою очередь, из молибденовых руд.

Например, в России есть месторождения, в которых добываются редкие земли, но не извлекаются. Это хибинские руды. Та же ситуация с ураном. При нынешних темпах потребления мы можем обеспечить и собственную, и зарубежную промышленность, но если потребуется больше, то мы не сможем решить эту задачу. Как же ее решать? Николай Бортников считает, что самый главный путь — открытие новых месторождений. Второй — совершенствование технологий обогащения и извлечения металлов. Третий — рециклинг, то есть повторное извлечение металлов. И четвертый — извлечение металлов из техногенных отходов.

magnifier.png Большинство открытых месторождений выходили на поверхность и лежали вблизи нее, тогда как многие образовались на глубинах до двух-трех километров. России необходимо разрабатывать технологии, которые позволяли бы открывать глубоко залегающие месторождения

По мнению академика Бортникова, недра Земли содержат значительно большие объемы металлических запасов, чем считается. Потому что большинство открытых месторождений выходили на поверхность и лежали вблизи нее, тогда как многие месторождения образовались на глубинах до двух-трех километров, это так называемые слепые месторождения, открытие которых началось в последние годы. Поэтому России необходимо разрабатывать технологии, которые позволяли бы открывать глубоко залегающие месторождения.

Читайте также:  Можно ли на диете есть сладости для диабетиков

Важным источником редких металлов должны стать отвалы ГОКов. Николай Бортников рассказал, что вместе с академиком Богатиковым и коллегами они провели изучение отвалов Тырныаузского ГОКа. Оказалось, что в этих хранилищах огромное количество разнообразных металлов. Переработка таких отвалов полезна и для экономики, и для экологии.

Не надо забывать и о ресурсах Мирового океана. Например, по оценкам специалистов, запасов меди в океане может хватить на шесть тысяч лет. 

ГЕОЛ ОЛОВО.png

Нужны поисковые заделы

Николай Похиленко начал свой доклад с оценки состояния государственных геологических структур, в первую очередь в Зауралье, где они фактически исчезли. Например, на северо-востоке (а это Камчатская область, Чукотка, Магаданская область) в советские времена работало 14 экспедиций, 10,5 тыс. специалистов. Сейчас их там осталось порядка 250. И по большей части их участники уже немолоды. Естественно, работы там если и ведутся, то в очень небольшом объеме. И такая ситуация везде.

ГЕОЛ ПОХИЛЕНКО.png

Научный руководитель Института геологии и минералогии им. В. С. Соболева СО РАН академик РАН Николай Похиленко

РАН

Результатом последних тридцати лет стало ослабление государственной геологической службы, упадок отраслевой геологической науки в Сибири и на Дальнем Востоке. Там остался всего лишь один более или менее активно работающий институт в Новосибирске. А раньше их было около десяти. В некоторых субъектах федерации упразднена система управления геологическим изучением недр. Результатом стало резкое снижение конкурентоспособности и эффективности геологоразведочных работ. Например, с 2005 по 2011 год были проведены работы по 255 проектам. Из них относительно успешными было всего лишь 22. Поэтому за последние два десятилетия серьезных и крупных открытий практически нет. Наша добывающая промышленность дорабатывает те месторождения и те запасы, которые были поставлены на баланс еще в советские времена.

В результате происходит сокращение и практическое исчерпание поисковых заделов по большинству стратегически важных видов полезных ископаемых, сокращение государственного фонда рентабельных участков недр для их предоставления в пользование добывающих компаний. А это чувствительный момент, потому что, если нет поисковых заделов, наши компании не идут на новые неизвестные территории, они идут за пределы Российской Федерации на подготовленные к освоению участки — в Африку, в Казахстан, в Монголию, куда угодно, где можно вложить деньги и через три-пять лет получить отдачу. Здесь они боятся очень серьезных поисковых и инвестиционных рисков, потому что из десяти проектов в лучшем случае один становится успешным. И нужны очень длинные деньги, которых в России нет. Ведь от начала работ до получения первой финансовой отдачи проходит до 15 лет. И компании не готовы идти на это.

Академик Похиленко процитировал руководителя «Полиметалла» Виталия Несиса, который говорил, что у нас практически нет поисковых заделов, нет подготовленных к освоению территорий. И в целом не хватает серьезных поисковых идей и мало специалистов, которые способны эти идеи генерировать. В результате формальные ресурсы, например, по урану обеспечивают наши потребности на 96 лет, а в реальности того, что можно экономически обоснованно добыть, хватит всего на 15 лет. Хром, соответственно, 33 года и три года. Цинк — 91 и 19. Свинец — 36 и 10. Золото — 23 и 11.

ГЕОЛ СВИНЦ ЦИНК.png

Низкое потребление не стимулирует

В советские времена потребление редких и редкоземельных металлов для высокотехнологической промышленности составляло примерно 8500 тонн. Два года назад было 1160 тонн, сейчас потребление опустилась ниже 1000 тонн. И это, как отметил академик Похиленко, показывает уровень нашей высокотехнологической промышленности. К сожалению, низкое потребление, то есть отсутствие спроса, не стимулирует развитие разведочных работ и добычных компаний по этому направлению.

magnifier.png Рения, металла, без которого невозможно строить двигатели самолетов, в мире производится всего 54 тонны в год, и почти все закупают Штаты. А в России рения производится всего лишь сотни килограммов. Хотя российской промышленности требуется не менее пяти тонн в год

Практически все металлы, что мы производим, констатировал Николай Похиленко, мы вывозим и при этом практически все ввозим в виде готовой продукции. Мы вывозим германий, но ввозим его в виде продукта. Рения, металла, без которого невозможно строить двигатели самолетов, производится в мире всего 54 тонны в год, и почти все закупают Штаты. А в России рения производится всего лишь сотни килограммов. Хотя российской промышленности требуется не менее пяти тонн рения в год. И так со многими металлами.

Оба докладчика согласились с тем, что Россия нуждается в восстановлении геологической отрасли, для чего необходимо создание соответствующей госкорпорации или Министерства геологии. Необходимо увеличить государственные ассигнования на геологию как минимум в три раза. Если этого не сделать, будет сложно обеспечить возобновление ресурсов по широкому кругу твердых полезных ископаемых. И наши планы развития высокотехнологической промышленности будут упираться в серьезные риски, связанные уже с состоянием национальной безопасности. Потому что нам могут что-то не продать из того, что мы сами не нашли и не добываем. Нормальное функционирование таких отраслей, как ракетостроение, самолетостроение, электроника и атомная промышленность, может оказаться под угрозой.

Источник